Multiphase approach to the numerical solution of a sharp interface saltwater intrusion problem

نویسندگان

  • P. S. Huyakorn
  • Y. S. Wu
  • N. S. Park
چکیده

A sharp interface numerical model is developed to simulate saltwater intrusion in multilayered coastal aquifer systems. The model takes into account the flow dynamics of salt water and fresh water assuming a sharp interface between the two liquids. In contrast to previous two-fluid flow models which were formulated using the hydraulic heads of fresh water and salt water as the dependent variables, the present model employs a mixed formulation having one fluid potential and a pseudosaturation as the dual dependent variables. Conversion of the usual sharp interface flow equations for each aquifer to an equivalent set of two-phase flow equations leads to the definitions of pseudosaturation, capillary pressure, and constitutive relations. The desired governing equations are then obtained by connecting neighboring aquifers via vertical leakage. The proposed formulation is based on a Galerkin finite element discretization. The numerical solution incorporates upstream weighting and nonlinear algorithms with several enhanced features, including rigorous treatment of aquitard leakage and well conditions, and a robust Newton-Raphson procedure with automatic time stepping. The present sharp interface numerical model is verified using three test problems involving unconfined, confined, and multilayered aquifer systems and consideration of steady state and transient flow situations. Comparisons of numerical and analytical solutions indicate that the numerical schemes are efficient and accurate in tracking the location, lateral movement, and upconing of the freshwater-saltwater interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of cut-off walls on repulsing saltwater based on modeling of density-driven groundwater flow and salt transport

Abstract:   A two-dimensional fully implicit finite difference model, which can be easily extended to three dimensions, is developed to study the effect of cut-off walls on saltwater intrusion into the aquifers. This model consists of a coupled system of two nonlinear partial differential equations which describe unsteady density-driven groundwater flow and solute transport. The numerica...

متن کامل

Laboratory investigation of water extraction effects on saltwater wedge displacement

There is a close connection between saltwater intrusion into aquifers and groundwater extraction. Freshwater extraction in coastal aquifers is one of the most important reasons for the saltwater intrusion into these aquifers. Condition of extraction system such as well depth, discharge rate, saltwater concentration and etc. could affect this process widely. Thus, investigating different extract...

متن کامل

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

Stochastic Optimization for an Analytical Model of Saltwater Intrusion in Coastal Aquifers

The present study implements a stochastic optimization technique to optimally manage freshwater pumping from coastal aquifers. Our simulations utilize the well-known sharp interface model for saltwater intrusion in coastal aquifers together with its known analytical solution. The objective is to maximize the total volume of freshwater pumped by the wells from the aquifer while, at the same time...

متن کامل

A correction factor to account for mixing in Ghyben-Herzberg and critical pumping rate approximations of seawater intrusion in coastal aquifers

[1] The classic Ghyben‐Herzberg estimate of the depth of the freshwater‐saltwater interface together with the Dupuit approximation is a useful tool for developing analytical solutions to many seawater intrusion problems. On the basis of these assumptions, Strack (1976) developed a single‐potential theory to calculate critical pumping rates in a coastal pumping scenario. The sharp interface assu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004